1099. Build A Binary Search Tree (30)
时间限制
100 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
-
The left subtree of a node contains only nodes with keys less than the node's key.
-
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
-
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
-
先建树 再中序遍历 同时数列排序放到对应中序位置 最后层序遍历
#define DeBUG #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <algorithm> #include <vector> #include <stack> #include <queue> #include <string> #include <set> #include <sstream> #include <map> #include <list> #include <bitset> using namespace std ; #define zero {0} #define INF 0x3f3f3f3f #define EPS 1e-6 #define TRUE true #define FALSE false typedef long long LL; const double PI = acos(-1.0); //#pragma comment(linker, "/STACK:102400000,102400000") inline int sgn(double x) {return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);} #define N 100005 int tree[1000][3]; int num[1000]; int k; void midorder(int x) { if (x == -1) return; midorder(tree[x][0]); // printf("%d ", x); tree[x][2] = num[k++]; midorder(tree[x][1]); return; } int ans[1000]; int ansnum; void layerorder() { queue<int>Q; Q.push(0); ansnum = 0; while (!Q.empty()) { int now = Q.front(); Q.pop(); ans[ansnum++] = tree[now][2]; if (tree[now][0] != -1) Q.push(tree[now][0]); if (tree[now][1] != -1) Q.push(tree[now][1]); } return; } int main() { #ifdef DeBUGs freopen("/Users/sky/Documents/sublime project/in.txt", "r", stdin); #endif int n; while (scanf("%d", &n) + 1) { int a, b; k = 0; memset(tree, -1, sizeof(tree)); for (int i = 0; i < n; i++) { scanf("%d%d", &a, &b); tree[i][0] = a; tree[i][1] = b; } for (int i = 0; i < n; i++) { scanf("%d", &num[i]); } sort(num, num + n); midorder(0); layerorder(); printf("%d", ans[0]); for (int i = 1; i < n; i++) printf(" %d", ans[i] ); printf("\n"); } return 0; }